Ultrastable Polymolybdate-Based Metal-Organic Frameworks as Highly Active Electrocatalysts for Hydrogen Generation from Water.
نویسندگان
چکیده
Two novel polyoxometalate (POM)-based metal-organic frameworks (MOFs), [TBA]3[ε-PMo(V)8Mo(VI)4O36(OH)4Zn4][BTB]4/3·xGuest (NENU-500, BTB = benzene tribenzoate, TBA(+) = tetrabutylammonium ion) and [TBA]3[ε-PMo(V)8Mo(VI)4O37(OH)3Zn4][BPT] (NENU-501, BPT = [1,1'-biphenyl]-3,4',5-tricarboxylate), were isolated. In these compounds, the POM fragments serving as nodes were directly connected with organic ligands giving rise to three-dimensional (3D) open frameworks. The two anionic frameworks were balanced by TBA(+) ions residing inside the open channels. They exhibit not only good stability in air but also tolerance to acidic and basic media. Furthermore, they were employed as electrocatalysts for the hydrogen evolution reaction (HER) owing to the combination of the redox activity of a POM unit and the porosity of a MOF. Meanwhile, the HER activities of ε(trim)(4/3), NENU-5, and HKUST-1 were also studied for comparison. Remarkably, as a 3D hydrogen-evolving cathode operating in acidic electrolytes, NENU-500 exhibits the highest activity among all MOF materials. It shows an onset overpotential of 180 mV and a Tafel slope of 96 mV·dec(-1), and the catalytic current density can approach 10 mA·cm(-2) at an overpotential of 237 mV. Moreover, NENU-500 and NENU-501 maintain their electrocatalytic activities after 2000 cycles.
منابع مشابه
Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production
Electrochemical water splitting has been considered as a promising approach to produce clean and sustainable hydrogen fuel. However, the lack of high-performance and low-cost electrocatalysts for hydrogen evolution reaction hinders the large-scale application. As a new class of porous materials with tunable structure and composition, metal-organic frameworks have been considered as promising ca...
متن کاملAtomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis
Hydrogen production through electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells. Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains as a great challenge. Here we synthesize a nickel-carbon-based catalyst, from carbonization of metal-organic frameworks,...
متن کاملInfluence of amine group on the adsorptive removal of basic dyes from water using two nanoporous isoreticular Zn(II)-based metal organic frameworks
Dyes are the most abundant hazardous components existing in the environment because of their extensive use in industries. So, in the present study, two isoreticular Zn(II)-MOFs, TMU-16 and TMU-16-NH2, were used for the adsorptive removal of harmful cationic dyes from aquatic medium. In order ...
متن کاملRecent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction
Hydrogen has received significant attention as a promising future energy carrier due to its high energy density and environmentally friendly nature. In particular, the electrocatalytic generation of hydrogen fuel is highly desirable to replace current fossil fuel-dependent hydrogen production methods. However, to achieve widespread implementation of electrocatalytic hydrogen production technolo...
متن کاملRecent Progress on MOF‐Derived Heteroatom‐Doped Carbon‐Based Electrocatalysts for Oxygen Reduction Reaction
The oxygen reduction reaction (ORR) is the core reaction of numerous sustainable energy-conversion technologies such as fuel cells and metal-air batteries. It is crucial to develop a cost-effective, highly active, and durable electrocatalysts for ORR to overcome the sluggish kinetics of four electrons pathway. In recent years, the carbon-based electrocatalysts derived from metal-organic framewo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 137 22 شماره
صفحات -
تاریخ انتشار 2015